Game theory choice under uncertainty

Lorenzo Pedretti

DAF (26 Jan 2021)

Lorenzo Pedretti

2 Main notions

Outline

What is a game?

- A game is a model that captures strategic interaction between players.
- Strategic interaction means that the utility of a player depends on both the decisions taken by the player and the rivals.
- Those decision affect the utility of the other and the environment in which choice are made.

Why do we use games?

- Decision theory is not sufficient to model markets in which there is strategic interaction between buyers and sellers
- Those markets are classified as imperfectly competitive:
 - market power and its abuse

Formally

A one-shot game in normal form can be represented by a table:

- Set of players
- Set of feasible strategies for each player
- Pay off function (of the strategy profile) for each player

Example A

Both Chiara and Alessandro need to decide whether to go to the cinema or to the theatre.

- We have 2 players: Chiara and Alessandro
- The strategies of Chiara are: "Cinema", "Theatre"
- The strategies of Alessandro are: "Cinema", "Theatre"

Example A

		Chiara	
			Theatre
Alessandro	Cinema	10,10	2,1
	Theatre	1,2	5,5

Example B

Both Sara and Virginia have decided to open a bar. If both of them decide to open it in the centre of Milan, the expected revenue is $100 \notin each$; if both of them decide to open it in the centre of Monza the expected revenue is $75 \notin each$; if one decides to open it in Milan and the other decides to open it in Monza, the former gets $200 \notin$ and the latter gets $150 \notin$

Example B

Who are the two players?

What are the strategies of Sara?

Example B

What are the strategies of Virginia?

Example B

What are the pay offs?

$\mathsf{Example}\ \mathsf{B}$

		Sara	
		MI ME	
Virginia	MI	100, 100	200, 150
	MB	150, 200	75, 75

Strategic positioning

- 2 contrasting effects:
 - direct effect: locating closer means steal demand from the rival
 - strategic effect: locating closer means stronger price competition
 - under some assumptions the latter prevails

Examples

- TV platform
- shops

Outline

Outline

Main notions

- Best response
- Dominant equilibrium
- Nash equilibrium
- Prisoner Dilemma
- Dynamic and extensive form

Definition

The best response is the strategy that gives a player the highest pay offs given the decision of the rival(s).

Intuition

If you anticipate that your rival will play a certain strategy, you can compare your own pay offs for any feasible strategy that you can play

Best response

Example A

		Chiara	
		Cinema Theatre	
Alessandro	Cinema	10,10	2,1
	Theatre	1,2	5,5

If Chiara knows that Alessandro will go to the Cinema, what is she going to do?

She wil go to the Cinema as well. Why?

Because

10 > 1

Example B

		Sara	
		MI MB	
Virginia	MI	100, 100	200, 150
	MB	150, 200	75, 75

If Sara knows that Virginia is locating in Milan, where will she decide to open her bar? Why?

Outline

Main notions

- Best response
- Dominant equilibrium
- Nash equilibrium
- Prisoner Dilemma
- Dynamic and extensive form

Rationality and common knowledge of rationality

- rationality: the more is better
- common knowledge of rationality: each player believes that the other players are rational and that they believe that the other players are rational and that...

Dominant strategy

For a player a dominant strategy is one that is preferred to any other strategy for any decision of the rivals

Example C

Matteo and Luca are going to decide how to get to school. The game is the following

		Matteo	
		Foot	Bike
Luca	Foot	2, 5	3, 10
	Bike	9, 8	7, 11

- Interpret the game
- What is a dominant strategy for Luca?
- What is a dominant strategy for Matteo?

Dominant equilibrium

Dominant Equilibrium

If all players have a dominant strategy, the corresponding strategy profile is a dominant equilibrium

Example C

• What is the dominant equilibrium?

Example B

		Sara	
		MI	MB
Virginia	MI	100, 100	200, 150
	MB	150, 200	75, 75

- What is a dominant strategy for Sara?
- What is a dominant strategy for Virginia?
- What is the dominant equilibrium?

The dominant equilibrium doesn't always exist

- It is based on strong assumptions;
- It doesn't always allow us to solve a game

Outline

Main notions

- Best response
- Dominant equilibrium
- Nash equilibrium
- Prisoner Dilemma
- Dynamic and extensive form

Further assumptions are required

- consistence of believes
- expectations on the other decisions must be correct

Definition

A Nash Equilibrium is a strategy profile such that each player is best responding to the other

Intuition

At the Nash Equilibrium no player has a unilateral incentive to deviate (given the decision of the rivals)

Example A

		Chiara	
		Cinema Theatre	
Alessandro	Cinema	10,10	2,1
	Theatre	1,2	5,5

What is/are the Nash Equilibrium?

Example A

		Chiara	
		Cinema Theatre	
Alessandro	Cinema	10,10	2,1
	Theatre	1,2	5,5

 $NE = \{(C, C), (T, T)\}$

Example B

		Sara	
		MI MB	
Virginia	MI	100, 100	200, 150
	MB	150, 200	75, 75

Is it (MI, MI) a Nash Equilibrium?

Nash equilibrium

Example C

What is the Nash Equilibrium?

Nash equilibrium

Example C

$$NE = \{(B, B)\}$$

Lorenzo Pedretti

Example D

What is the Nash Equilibrium?

Example D

Outline

Main notions

- Best response
- Dominant equilibrium
- Nash equilibrium
- Prisoner Dilemma
- Dynamic and extensive form

An online example

You are paired with a classmate.

		B	
		COOPERATE	DEFECT
۸	COOPERATE	2, 2	0, 4
^	DEFECT	4, 0	1, 1

Prisoner Dilemma

An example

What is the Nash Equilibrium?

$$NE = \{(C, C)\}$$

Why isn't (N, N) a NE?

Because there is a unilateral incentive to deviate!

Coordination Failure

The prisoner dilemma is an example of coordination failure. The fact that decisions are driven only by one's own interest lead to a suboptimal outcome

Pareto dominance

The cooperative outcome is a Pareto equilibrium: there is no other strategy profile that would make any player better off leaving the other at least as well off

Outline

Main notions

- Best response
- Dominant equilibrium
- Nash equilibrium
- Prisoner Dilemma
- Dynamic and extensive form

Tree representation

Anna and Martina have to decide whether to go to the sea or to the mountains. Anna decides first.

Normal form representation

What are the Nash Equilibria?

Is (S, SS) reasonable (*credible*) given the dynamic of the game?

Playing always S is a non credible threat

Subgame Perfect Nash Equilibria

- A strategy profile such that it is NE of any subgame
- We can solve by backward induction

Lotter

Outline

Outline

- Some experiments
- Definitions

1^{st} experiment

Choose between 3 alternatives:

- You receive 1000€
- I toss a coin:
 - If head, you win 2000€
 - If tail, you win 0€
- You are indifferent

Saint Petersbourg Paradox

- Nicolas Bernoulli (18th century)
- Toss a fair coin:
 - The game ends the first time the coins comes up with Head
 - Pays 2ⁿ ducats (at the n-th trial)
- How much would you pay at most to enter (perceived fair price)?

Example

- If H at the first time you get 2 ducats
- If TTTH you get $2^4 = 16$ ducats

Outline

- Some experiments
- Definitions

Definitions

Lottery

۲

$$L = \{c_1, p_1; \ldots; c_n, p_n\}$$

- c_i: outcomes/pay offs
- $p_i \in [0, 1]$: probabilities

Definitions

Expected Value

$$EV(L) = \sum_{i=1}^n c_i p_i$$

1^{st} experiment - analysis

We have 2 lottey

- sure choice:
 - L* = {c₁ = 1000, p₁ = 1}
 EV(L*) = 1000 · 1 = 1000
- risky alternative:
 - L** = {c₁ = 2000, p₁ = 0.5; c₂ = 0, p₂ = 0.5}
 EV(L**) = 2000 · 0.5 + 0 · 0.5 = 1000
- risk lover or risk averse or risk neutral

Saint Petersbourg Paradox - analysis

We have one lottery:

$$L = \{c_1 = 2, p_1 = \frac{1}{2}; c_2 = 2^2, p_2 = \frac{1}{2^2}; \dots \}$$
$$EV = \sum_{i=1}^{+\infty} 2^i \left(\frac{1}{2}\right)^i = \sum_{i=1}^{+\infty} 1 \to +\infty$$

Expected Utility

۲

- Daniel Bernoulli proposed $u = \log(\cdot)$
- Principle of decreasing marginal utility

$$EU(L) = \sum_{i=1}^n u(c_i)p_i$$

• The certain equivalent c_L is defined as

$$EU(L) = EU(\{c_L, 1\})$$

• The risk premium (increase in risk aversion) is

1

$$\pi_L = EV(L) - c_L$$

Compare lotteries

• we can use the expected utility or analogously the certain equivalent (monotonicity)

Insurance problem

- $L = \{c_1 a\delta, 1 p; c_2 + a a\delta, p\}$
- *a* is the unit that reimburse $1 \in$ in case of damage
- δ is the premium paid per unit
- $a\delta$ is the coverage
- if $\delta = p$ the insurance is actuarially fair

Bibliography

- Jeffrey M. Perloff (2017). Microeconomics, Theory and Applications with Calculus, Pearson
- Paul Belleflamme, Martin Peitz (2015). Industrial Organization, Cambridge